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Use of the Field-Iteration Method in Studying
the Three-Dimensional Phased Array

for Electromagnetic Hyperthermia
Tianquan Deng

Abstract—The field-iteration method @IM) is used for simula-
tion of the three-dimensional (3-D) phased array for deep regional
hyperthermia at a frequency of 200 MHz. The iterative equation
involving the electric field integral equation is derived using
the dyadic Green’s function with singularities at source points.
The electric field and specific absorption rate distributions in a
circular cylindrical model of muscle-like medium and in a model
of computerized tomography scans of a liver cancer patient are
calculated, respectively, using different amplitudes and/or phases
and/or positions of individual applicators of the H-horn phased
array. The obtained numerical results compared with the moment
method results are analyzed to assess the accuracy of the field-
iteration method and also to predict the advantages of the 3-D
phased array hyperthermia system.

L INTRODUCTION

INTEREST IN using electromagnetic (EM) hyperthermia
for cancer treatment has increased significantly [1]-[4].

Particularly in noninvasive EM hyperthermia, one attempts to
focus the EM energy in the tumor, while avoiding damage the

surrounding healthy tissue. The annular phased array (APA) is

widely applied to such selectively localized heating because
of its capability of steering the peak of the electric field
by manipulating the amplitude and phase of the individual
applicators [5]–[7]. Such a conventional APA hyperthermia
system has obtained significant energy focus mainly on the
plane where the applicators are placed, that is two-dimensional
(2-D) EM-focus phased array (2-D-PA). In this paper, a three-
dimensional (3-D) EM-focus phased array (3-D-PA) will be
presented, in which each applicator can be arranged either in
a planar or in annular or in a spherical array or any other array,
for example, subannular and subspherical forms. A deionized

water-loaded H-plane horn antenna is used as an element of
such a phased array. This is because such a horn antenna

phased array is characterized by good impedance matching
between the patient and the horns. It also provides numer-

ous selections of shifting the heating patterns by electrically

varying the amplitude andlor the phase of the sources andlor
manually changing the positions of the applicators. The H-horn
applicator design and the 2-D simulations have been presented
earlier [8] and [9].
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Fig. 1. 3-D H-horn phased device and its coordinates system.

In EM hyperthermia, computer simulation is a fast and

convenient approach for device evaluation or for anticipating
the effectiveness of a treatment. From the EM theory, this
problem is EM scattering involving the electric field integral
equation (EFIE) which contains a dyadic Green’s function with
the singularity at source points [10]–[ 12]. The conventional
method of solving such a 2- or 3-D problem is to use the mo-
ment method (MM) [13] and [14]. In recent years, many other
numerical methods, for example, FDTD [15], conjugate gradi-
ent method [16], hybrid boundary element method [17], etc.,

have been developed for solving electromagnetic scattering by
inhomogeneous scatterers. The possibility and the validity of

using an iterative method for electromagnetic scattering by
some simple inhomogeneous models have been investigated
recently [18] because of its computational efficiency and rapid
convergence. A similar iteration method has been adopted by
G. A. Thiele et al. [19]–[21 ] to solve the magnetic field integral
equation (MFIE) and the electric field integral equation (EFIE)
for scattering of a perfectly conducting body illuminated by
a plane wave. In the present paper, we will concentrate on
solving the 3-D electric field integral equation (EFIE) inside
a volume of an irregularly shaped inhomogeneous dielectric

body induced by arbitrary incident waves.
This iterative technique is used to solve the EFIE for two

models in this paper. Fh-st, the calculation of a finite length
cylinder of muscle-like medium illuminated by the phased
array is analyzed to compare with its moment method results
and to show the capability of shifting the E-field distributions.
Second. a model based on CT scans of a liver cancer patient is
simulated three-dimensionally in the case of different radiation
conditions from the H-Horn phased array at a frequency of 200
MHz. It is shown that this iterative method does not involve
the inversion of matrices and only requires a straightforward
iteration procedure that is suitable for computer programming.
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Flg.2. Thenormalized E-field distributions onthecentral plane (.YOYplane) oftiemuscle-like cylinder with three different ra(tiation conditions: (a) one

applicator positioned at (R, @,P) = (30 cm. 90”, 00), b) four applicators positioned at (30 cm, 9t3°. OO). (30 cm. 90°. 900). (q13cm, 90°. 1800), (30
cm, 90°, 270°) with equat amphtude and equal phase, and (c) four applicators placed at the same positions as (b), with equal amplitude on all applicators
but with 180° phase lags on the applicators (30 cm, 90°, 180°) and (30 cm, 90°, 2700).

The effectiveness of the 3-D phased array hyperthermia system
will also be discussed using the numerical results obtained.

II. THEORY

In, the following analysis, a exp (jut) time dependence
is assumed for field quantities, and the relative magnetic

permeability in the media ,ur. = 1.

A. The Electric Field Integral Equation (EFIE)

Fig. 1 shows a 3-D arbitrarily-shaped inhomogeneous di-
electric body (such as a human body) illuminated by an
incident wave denoted by ~1 (T7. The incident field penetrates
the dielectric body to produce the electric field denoted by
fi(fl. By invoking the equivalence principle [22], we replace

the dielectric body by the volume polarization current ~p (F”).

Hence the total electric field inside the dielectric body V’ can
be expressed as

~-(

where ~P (F’) is the volume polarization current

cf’p(F”)= jLL@[Er(#) – I]@(F’) (2)

and ~(F’, F’) is the electric dyadic Green’s function in the
source region [10]–[12]

z@F,7’) = PVGO(F, F’) + ~ 6(F - F’).
o

(3)
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Fig, 3, The normalized E-field distributions along a diameter (.Y axis) corresponding to the three cases of Flg.2.

PV denotes the principal value of the integral when the

singularity appears in the source region [10]–[121. Go(F, ?“)—
is the free-space dyadic Green’s function, and ~ is the depo-

larizing dyadic defined in [12]

?
~ = ~, when the principal volume

is a sphere or a cube.

Therefore, (1) can be rewritten as

That is

Here

the hat “-” Denotes a vector.

the hat “ =“ Denotes a dyadic.

[4)

(5)

(6)

(7)

1
< The position vectors at the field points.
-/
T The position vectors at the source points.

E, (r~ The relative complex permittivity.

ko = w- The free-space wave number.

7 The identity dyadic.

Equation (6) or (7) is the general formula for solution of

scattering by an arbitrarily shaped inhomogeneous dielectric
body. Equation (6) is the conventional expression that is

solved by the moment method [13] and [14]. Equation (7)
is a convenient form for the iterative procedure discussed in
the following.

B. Iteration Method

In the (A”, Y, Z) rectangular coordinates system the volume

V’ is divided into IV subvolume cells, AVm = 2an . 2b~ .
2cn, n = 1,2, . . , N, where 2an, 2b~, 2c~ are the distances
along the A’. Y, Z axes, respectively. The field and permit-
tivity in each cell are assumed to be constant. Hence (7) can
be discretized for each cell.

It is known that (7) is the Fredholm integral equation of
the second kind [23], [24] which can be solved using iterative
method. The procedure of the iterative method is as follows:.
substituting the incident field Er (F’) as the initial solution

into the right side of (7) to replace fl(~’), we obtain a

new field solution at the left side denoted by ~L 1)(F): then

substituting E(1) (?’) into the right side of (7) again. we obtain
another solution ~fz) (7’) at the left side: and so on, we get
~1 --s ~(l) ~ ~(z) _ . . ~ fi(Z-l) -.+ ~(i), that is

~([Qw(wL, ~)+ Qzz(m, n)]E$’-l)(n)

+ Q.y(m n)E\-l)(n) + Q~.(m, n)Ejz-l)(n))
1

(8)
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Fig. 4. (a) Computerized tomography (CT) scan of a liver caucer body with the tumor region encircled. (b) The discretized version of the above CT scan.

3

{

&.(n) – 1
.q(d + s Am

e.(m) + 2
71,=1

. (Qy.(rn, n) E~’-’)(n) + [Qzz(w n) + Q.,(Tw ~)]

. E(J-l) (n) + Qgz(rn, ~)Ez
}

(~-l)(n))
Y

@)(m) =

~ (Qz.(wL, n)Ei’-l)(n) + Qz,(w n)-E$-l)(n)

+ [Q..(TT n)+ Q,, (Tw TL)l@-l)(~))
}

where

m,n=l,2, . . .. N.l=l,2, . . .

(9)

(lo)

(m) = (Fm) = (%, ym, %2 ) The coordinates at the

field points.

(n) = (FL)= (4, 3/:,4) The coordinates at the

source points.

E.(m) The relative complex per-

mittivity of cell m.
&l)(m) The z component of elec-

tric field in the cell m

after lsteps of iterations.

Q.t(w ~)l., t==~,y,. The coupling coefficients

between cell m and cell n

given in the following.

1) If m = n, i.e., (x~, y~, z~) = (z~, YL, .z~), we have

{
QZZ(m, n) = 4m ~ exp (–jkoLl) -- exp (–jkoan) + ~1

T/4

+ 16am
/{

1

z
exp (–jkoLz)

o

1——
L1 }

exp (–jkoL1) dip’

J

tan-’ (cn/bn) ~

+ 8a~
{- L3

exp (–jkoL3)
o
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Fig, 5. Thenormalized SARdistribntions onthe.YOI' plane under three different radiation conditions at200MHz: (a)sixhom antennas placed unifom1y
andannularlv around the model with eaualamditude andohase on each antenna. (b)three homantennas Positlonedat(30 cm. 90”. 90°), (30cm,900, 1350),
(30 cm, 90°.’180° ) with equal amplitud~ and e~ual phase o; each antenna, and (c) mne horn antennas to for-m a 3-D phased array with 3-row and 3-column horns
positioned at (26.5 cm, 70°, 1350), (30 cm. 90°, 135° ), (26.5 cm, 110°.135° ); (26.5 cm. 70°, 180° ), (30 cm. 900., 1800). (26.5 cm, 110°.180° ); (26.5 cm. 70°,
2250), (30 cm, 90°, 2250), (26.5 cm, 110°, 225° ), energized, respectively, in amphtudes of 3 x 0.6, 3 x 1.0, 3 x 0.6 and in phases lags of 3 x OO.3 x 70°, 3 x 0°.

}
— exp (–jkoL2) c@’

?r/4

+i’d {

+ exp (–jk(lL~) and
tan–l (cn/bn)

1

Lz }
— exp (–jkoL2 ) dp’ (11)

where

L1 = ~m

L,={u,+(&)2

L=/%
Here, the

‘4=/”’+(s)2
Q,,(W ~) = 4?..(W ~)lan+
Q.. (TTL~) = Q..r(w ~) 1.. -..

Qq(~> TL)= Qwr(w TL)

=0

Q.i-(m, n) = Q~.(m, n)

=0

Qyz(m ~) = Q.,(w ~)

= o.

symbol “+” means replacement.

(12)

(13)
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Fig. 6. Comparisons of the normalized SAR along the X axis going through the liver tumor for three cases of Fig. 5. The dotted lines indicate the
position of the tumor center and the respective SAR values for each case.

2) If m # n, i.e., (z~, y~, .z~) # ($~, y~, z~), we have C. The Incident Field from the Phased Array

Qzz(m, n)

y;+b.

“/ /

z:+%

y~ –b. z~ —Cn

{

jk13L5 + 1
~ (z; -an – Zm) ~L5)3

.exp (–jkoL5) – (x: + an – zm)

jkoLfj + 1

(L6)3 1exp (–jko~6) dy’ dz’

Q.y(m n)

‘L:; /

. z: +C.
(YL - Ym)

z~ —Cn

{

jk13L5 + 1

(L5)3
exp (–jkoL5)

jk13Llj + 1—
(L6)3 1exp (–jkoL6) dy’ dz’

where

L5 = ~(z~ – an – zm)z + (y’ – ym)z + (z’ – zm)z

L6 = <(zL + a. – xm)2 + (y’ – ym)2 + (2’ – .zm)2

The incident field produced by 3-D H-horn phased array
hyperthermia system (shown in Fig. 1) is

(18)

~~ (F) is the radiation field from the horn antenna i

E’:(p) =

//{

~ ,( F,) ~ exp(–.jkOlF– 7“1)
(14) “ ~, at i%’ [ [F- PI 1}

dS’ (19)

where ~a,i is the aperture E-field of the horn antenna i, it
takes different forms for different kinds of aperture antennas,

such as waveguide antenna and slot antenna etc.
In the (X, Y, Z) coordinates system shown in Fig. 1, for a

H-horn phased array, the above radiaticm field can be expressed
as

(15) DHf2

//

b/2

fif (Z) y, Z) = i$’Ai
–DH/2 –b/2

{cos(~)exd =’”)

(16)
[

d exp(–jkol~– 7’1)
.—
f%’ 1~-p 1}di d.z’ (20)

The other forms of Qst (m, n) are similar and not given where
here. The convergence coefficient gt~) of the 1step of iteration
is defined as IF– PI = /(z, – z’)’ + (v,)’+ (% - Z’)2 (21)

~(0 is ~ very impo~ant pmameter to judge whether the y~ = X sin 19iCOS~~ + y sin Oi sin pi

iteration is convergent or not. + z cos Oi – Ra sin 9i sin pi (23)
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Comparisons of the normalized SAR along the Z direction in the optimized case. Contour (a) on the plane Z = –2,5 cm; Contour (b) on the plane
cm (in which ““+” denotes the location of the tumor); and Contour (c) on the plane Z = 2.5 cm.

Zi = — z cos Oi cos pi, —g cos Ot sin Pt

+zsin~z–llzcos ~,. (24)

# and ii’ are the unit vectors, respectively, in the tangential

and normal directions of the antenna aperture plane. RH,

DH, and b are sizes of the horn antenna.~ is the wavelength

at the operating frequency. R,, 0,, p, denote the position of

antenna i. A,, #, are the amplitude and phase of antenna i,

respectively,

Here Ri, Oi, pi and Ai, ~i are used to control the electric

field distributions produced by the phased array. Then the

E-field can be used to calculate the specific absorption rate

(SAR)

Pm

_ 7T&oE’’f[i12
—

Pm
(25)
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where IS is the conductivity of the lossy dielectric media, pm

the density, s“ the loss factor of tissue or dielectric objects,

and $ is the operating frequency.

III. NUMERICAL RESULTS

A. The Muscle-Like Cylinder Model

To understand the electrical energy focus and shifting ability

of the H-horn phased array, and to assess the accuracy of the
field-iteration method, the E-field distributions inside a circular

cylinchical model of muscle-like medium are calculated under
several different radiation conditions. The muscle-like medium
has a complex permittivity Cr = 56 – j90 at 200 MHz and a

density pm = 1.02x 103 kg/m3. The applicators are placed on
the central horizontal plane of the cylinder that has a diameter
of 32 cm and a height of 80 cm. The entire cylindrical structure
consists of 8064 cells with a cell size of less than 2 cm.

Fig. 2 shows the absolute normalized E-field distributions

on the central plane (XOY plane shown in Fig. 1) of the
whole radiation space surrounded by the APA where the horn
applicators are placed. The numerical results are obtained
in three cases [shown in Fig. 2(a)–(c)]: (a) one applicator

positioned at (R, 0, p) = (30 cm, 90°, 00), (b) four applicators
positioned at (30 cm, 90°, 00), (30 cm, 90°, 900), (30 cm, 90°,
1800), (30 cm, 90°, 270°) with equal amplitude and equal
phase, (c) four applicators placed at the same positions as (b),
with equal amplitude on all applicators but with 180° phase
lags on the applicators (30 cm, 90°, 180°) and [30 cm, 90”,
2700).

In order to compare with moment method (MM) results

conveniently, more obviously 2-D curves are used to show
the above E-field distributions along a diameter on the X-axis
(Fig. 3). It is found that the FIM results agree very well with

those from moment method (MM), and the CPU time of FIM

code can be reduced by 20910compared with those of MM. It
is shown that the E-field distributions shift significantly with

changes in radiation conditions of the applicators.

B. The Model from CT Scans

A realistic model of a liver cancer patient irradiated by
the H-horn phased array system is simulated to predict the
specific absorption rate (SAR) inside the upper abdomen of
the patient. The model simulated is based on computerized
tomography (CT) scans along the axis of the body. Fig. 4(a)

displays one such CT scans on the centrall plane of a 4 x 5 x 5
cm3 tumor encircled inside the patient’s liver. Fifteen such

CT slices taken from the last rib to the top of the diaphragm
of the patient form the input data for simulations, In practice
a deionized water bolus is typically used between the patient
body and the radiation horns to improve field matching as
well as to obtain superficial cooling. Therefore the simulated
3-D space consists of the filled water and the body itself.
Normally the applicators are placed at the level of the liver
cancer region. The whole model consists of 24930 volume
cells with different cell size of around 1 cm, The values for

dielectric constants and densities of various tissues have been
tabulated in the paper [25]. A rectangular coordinates system
is established so that the X axis goes through the tumor, the
Y axis goes from the back to the front of the patient body and
Z axis goes along the axis of the body from the head to the
feet, Fig. 4(b) presents the discretized vcmion of the above CT
scan, in which the position of each cell, the position and the
dimensions of the tumor as well as the established coordinates
system are shown precisely.

Fig. 5(a)–(c) shows the normalized SAR distributions on the
XOY plane under three different radiation conditions at 200
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MHz. The SAR values are normalized by their maxim 100
in each set of radiation conditions. Fig. 5(a) corresponds to
the case of six horn antennas placed uniformly and annularly
around the model with equal amplitude and phase on each
antenna. Fig. 5(b) corresponds to the case of three horn
antennas positioned at (30 cm. 90°, 900), (30 cm, 90°, 1350),
(30 cm, 90°, 180°) with equal amplitude and equal phase on
each antenna. Fig, 5(c) corresponds to the optimized results
with relatively high SAR value deposited in the tumor region,

In this case, nine horn antennas are used to form a 3-D

phased array with 3-row and 3-column horns positioned at

(26.5 cm, 70°, 1350), (30 cm, 90°, 1350), (26.5 cm, 110°,
1350); (26.5 cm, 70°. 1800), (30 cm. 90°, 1800), (26.5 cm,
110°, 1800); (26.5 cm, 70°, 2250), (30 cm, 90°, 2250), (26.5

cm, 110°, 225° ), These antennas are energized, respectively,
in amplitudes of 3 x 0.6, 3 x 1.0, 3 x 0.6 and in phases lags
of 3 x 0°, 3 x 70°, 3 x 0°. Because of computation expense,
the optimization has been done by using good initial estimates
and large steps in terms of the position and the amplitude and
phase on each applicator. In order to understand the ability

of the horn phased array hyperthermia system to focus the

electric energy on the desired region such as the tumor region,

the above three cases of the normalized SAR along the X
axis going through the liver tumor are compared in Fig. 6.
The dotted lines indicate the position of the tumor center and
the respective SAR values for each case. Curves a, b, and c
in Fig. 6 correspond to Fig. 5(a)–(c), respectively.

In Fig. 5(a), the desired heating pattern has not been ob-

tained due to no any manipulation of the radiation parameters
on the applicators. It is a simple and efficient way to shift the

power pattern significantly only by adjusting the positions of
the applicators [shown in Fig. 5(b)]. The desired selectively
heating in tumors has been achieved in the case of Fig. 5(c)

by optimizing SAR’s to find the amplitudes and phases as well
as the positions of the applicators. It is more obviously shown
in Fig. 6 that up to 91 of SAR in cancers has been attained
in curve c. while the SAR’s are less than 65 in curve a and
less than 55 in curve b. The normalized SAR values represent
relatively the percentage of the absorbed power in each cell
to the total power. Therefore, obviously case c [shown in
Fig. 5(c) and curve c in Fig. 6] is the desired heating scheme

for the liver cancer patient.
It has been pointed out that the presented 3-D phased array

is capable of focusing EM energy in 3-D directions. Its focus
feature along the X and Y directions has already been shown
in Figs. 5 and 6. Moreover its focus capability along the Z

direction is shown in Fig. 7 for the above optimized case.
Contour (a) with maximum SAR of 65 is plotted on the plane
Z = –2.5 cm (upper end of the tumor); Contour (b) with
maximum SAR of 90 is on the plane Z = O cm (the tumor
located); and Contour (c) with maximum SAR of 70 is on the
plane Z = 2.5 cm (lower end of the tumor),

Each run of the FIM code for a set of radiation conditions
requires 3 1–38 CPU min on a VAX-11/750 computer. Compu-
tations in this paper also demonstrate that the iterative method
is efficient and accurate. It does not involve the inversion
of matrices and direct boundary condition. The excellent
numerical convergence behavior in Fig. 8 supports this feature,

in which the convergence coefficient g < 0.01 is gotten after
40 iteration steps for curve a when the cylinder is modeled in
the case of Fig. 2, and after 60 iteration steps for curve b when
the human body model is calculated in the case of Fig. 5.

Based upon the presented performance of the FIM code, it
shows promise as a fast and accurate method for numerically
studying electromagnetic hyperthermia. As stated in the paper
[19]-[21], the FIM code has the following advantages: it
is extremely simple to write programs and execute rapidly;

it does not involve the inversion of matrices; its numerical

convergence is rapid.

IV. CONCLUSION

In this paper, a new iterative method is developed to
compute the electric fields inside an arbitrarily shaped inhomo-
geneous dielectric body such as a human body. The validity
and good accuracy of the field-iteration method (FIM) have
been tested using the moment method. The feature of 3-D H-
horn phased array hyperthermia system at 200 MHz suitable
for heating deep-seated regional and eccentric cancers by

manipulating the radiation parameters have been investigated.

The technique developed in this paper can be easily applied
to other phased array hyperthermia system and other locations
of tumors in different patients.
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